定理29
AO,BO,COを三角形ABCの内角の二等分線とし,\(a,b,c\)を与えられた点Mのこれらの直線に関する対称点とする。このとき直線A\(a\), B\(b\), C\(c\)は三角形ABCの各辺における点Mの射影A\({}^\prime\), B\({}^\prime\), C\({}^\prime\) を通る円の中心Iに関して点Mの対称点M\({}^\prime\)において交わる。
第二編円 定理29(p.56)
コメントを残す
定理29
AO,BO,COを三角形ABCの内角の二等分線とし,\(a,b,c\)を与えられた点Mのこれらの直線に関する対称点とする。このとき直線A\(a\), B\(b\), C\(c\)は三角形ABCの各辺における点Mの射影A\({}^\prime\), B\({}^\prime\), C\({}^\prime\) を通る円の中心Iに関して点Mの対称点M\({}^\prime\)において交わる。