定理21
I, I\({}^\prime\), I\({}^{\prime\prime}\), I\({}^{\prime\prime\prime}\)を三角形ABCの内接円および傍接円の中心とすれば,
- II\({}^\prime\)あるいはI\({}^{\prime\prime}\)I\({}^{\prime\prime\prime}\)を直径として描いた円は頂点B,Cを通る。
- II\({}^{\prime\prime}\)あるいはI\({}^{\prime}\)I\({}^{\prime\prime\prime}\)を直径として描いた円は頂点C,Aを通る。
- II\({}^{\prime\prime\prime}\)あるいはI\({}^{\prime}\)I\({}^{\prime\prime}\)を直径として描いた円は頂点A,Bを通る。
- これらの円のすべては外接円周上に中心をもつ。
- 弦A\({}^\prime\)B\({}^\prime\), B\({}^\prime\)C\({}^\prime\), C\({}^\prime\)A\({}^\prime\)はそれぞれ直線CI,AI,BIの中点における垂線である。
注意:解答の図を見ると,I\({}^\prime\)はAの,I\({}^{\prime\prime}\)はBの,I\({}^{\prime\prime\prime}\)はCの向かい側にある傍接円の中心である。
また三角形ABCの外接円とAI\({}^{\prime}\)の交点をA\({}^\prime\)などとしている。