第二編円 定理21(p.49)

定理21
I, I\({}^\prime\), I\({}^{\prime\prime}\), I\({}^{\prime\prime\prime}\)を三角形ABCの内接円および傍接円の中心とすれば,

  1. II\({}^\prime\)あるいはI\({}^{\prime\prime}\)I\({}^{\prime\prime\prime}\)を直径として描いた円は頂点B,Cを通る。
  2. II\({}^{\prime\prime}\)あるいはI\({}^{\prime}\)I\({}^{\prime\prime\prime}\)を直径として描いた円は頂点C,Aを通る。
  3. II\({}^{\prime\prime\prime}\)あるいはI\({}^{\prime}\)I\({}^{\prime\prime}\)を直径として描いた円は頂点A,Bを通る。
  4. これらの円のすべては外接円周上に中心をもつ。
  5. 弦A\({}^\prime\)B\({}^\prime\), B\({}^\prime\)C\({}^\prime\), C\({}^\prime\)A\({}^\prime\)はそれぞれ直線CI,AI,BIの中点における垂線である。

注意:解答の図を見ると,I\({}^\prime\)はAの,I\({}^{\prime\prime}\)はBの,I\({}^{\prime\prime\prime}\)はCの向かい側にある傍接円の中心である。
また三角形ABCの外接円とAI\({}^{\prime}\)の交点をA\({}^\prime\)などとしている。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

*

日本語が含まれない投稿は無視されますのでご注意ください。(スパム対策)